THE SYNTHESIS AND SOME PROPERTIES OF N,N'-BIS(3-ALKOXYPHENYL)UREAS

Fridrich GREGAN, Viktor KETTMANN, Jozef CSOLLEI and Pavol NOVOMESKY

Department of Organic Chemistry, Comenius University, Kalinciakova 8, 832 32 Bratislava, The Slovak Republic

> Received January 18, 1993 Accepted April 2, 1993

Symmetrical N,N'-diarylureas can be prepared by heating arylisocyanates with water¹. N,N'-Diarylureas are also formed as by-products during the preparation of arylcarbamoic acid esters by adding of tertiary alcohols to arylisocyanates^{2,3}.

We prepared N,N'-bis(3-alkoxyphenyl)ureas IIa - IIh by adding of water to 3-alkoxyphenylisocyanates I in the presence of sodium hydroxide (Scheme 1) according to the literature¹.

For R see Table I

Scheme 1

As shown in Table I, which lists analytical data and some physical properties of the compounds *II*, the yields range from 72 to 83%. We found that in contrast with alkoxyphenylcarbamoic acid esters^{4,5}, all the *N*,*N'*-bis(3-alkoxyphenyl)ureas prepared (including those with a higher number of carbons in the alkoxy group) are practically insoluble in nonpolar solvents (e.g., hexane). The structures of compounds *II* were confirmed by their ¹H and ¹³C NMR spectra (Tables II and III) and by IR spectroscopy. The chemical shifts were in keeping with the proposed chemical structures. In the IR spectra of all the compounds *IIa – IIh*, the following characteristic absorption bands were observed^{6 – 8}: a band of medium intensity at 3 420 cm⁻¹ due to the N–H stretching vibration, an intense band at 1 677 – 1 679 cm⁻¹ (C=O stretching), and a medium intensity band at 1 600 – 1 605 cm⁻¹ (aromatic C–C stretching).

TABLE I

Physical properties and elemental analyses of compounds IIa - IIh

R	Formula	M. p., °C	R_{F}^{a}	Calculated/Found		
	1 0111111	Yield, %	$R_M^{\ \ b}$	% C	% H	% N
CH ₃	$C_{15}H_{16}N_2O_3$	173 – 175 83	0.590 -0.158	66.18 66.40	5.92 6.20	10.28 10.51
CH ₂ CH ₃	$C_{17}H_{20}N_2O_3$	158 – 159 81	0.503 -0.005	68.00 67.86	6.71 6.58	9.32 8.98
(CH ₂) ₂ CH ₃	$C_{19}H_{24}N_2O_3$	159 – 161 77	0.359 0.252	69.50 69.20	7.37 7.67	8.53 8.20
(CH ₂) ₃ CH ₃	$C_{21}H_{28}N_2O_3$	138 – 139 76	0.249 0.497	70.77 70.34	7.92 8.21	7.86 8.12
(CH ₂) ₄ CH ₃	$C_{23}H_{32}N_2O_3$	133 – 134 73	0.183 0.650	71.86 71.52	8.39 8.19	7.28 7.62
(CH ₂) ₅ CH ₃	$C_{25}H_{36}N_2O_3$	132 – 133 75	0.123 0.853	72.80 72.71	8.80 8.69	6.79 7.12
(CH ₂) ₆ CH ₃	$C_{27}H_{40}N_2O_3$	130 – 132 73	0.079 1.067	73.60 73.20	9.15 9.42	6.36 6.09
(CH ₂) ₇ CH ₃	$C_{29}H_{44}N_2O_3$	130 – 131 72	0.061 1.187	74.33 74.58	9.46 9.17	5.98 6.20
	R CH ₃ CH ₂ CH ₃ (CH ₂) ₂ CH ₃ (CH ₂) ₃ CH ₃ (CH ₂) ₄ CH ₃ (CH ₂) ₅ CH ₃ (CH ₂) ₆ CH ₃	R Formula CH ₃ C ₁₅ H ₁₆ N ₂ O ₃ CH ₂ CH ₃ C ₁₇ H ₂₀ N ₂ O ₃ (CH ₂) ₂ CH ₃ C ₁₉ H ₂₄ N ₂ O ₃ (CH ₂) ₃ CH ₃ C ₂₁ H ₂₈ N ₂ O ₃ (CH ₂) ₄ CH ₃ C ₂₃ H ₃₂ N ₂ O ₃ (CH ₂) ₅ CH ₃ C ₂₅ H ₃₆ N ₂ O ₃ (CH ₂) ₆ CH ₃ C ₂₇ H ₄₀ N ₂ O ₃ (CH ₂) ₇ CH ₃ C ₂₉ H ₄₄ N ₂ O ₃	RFormulaM. p., °C Yield, % CH_3 $C_{15}H_{16}N_2O_3$ $173 - 175$ 83 CH_2CH_3 $C_{17}H_{20}N_2O_3$ $158 - 159$ 81 $(CH_2)_2CH_3$ $C_{19}H_{24}N_2O_3$ $159 - 161$ 77 $(CH_2)_3CH_3$ $C_{21}H_{28}N_2O_3$ $138 - 139$ 76 $(CH_2)_4CH_3$ $C_{23}H_{32}N_2O_3$ $133 - 134$ 73 $(CH_2)_5CH_3$ $C_{27}H_{40}N_2O_3$ $130 - 132$ 73 $(CH_2)_6CH_3$ $C_{29}H_{44}N_2O_3$ $130 - 131$ 72	RFormulaM. p., °C Yield, % R_{μ}^{a} R_{M}^{b} CH3C ₁₅ H ₁₆ N ₂ O3173 – 1750.590 -0.158CH2CH3C ₁₇ H ₂₀ N ₂ O3158 – 1590.503 81CH2)2CH3C ₁₉ H ₂₄ N ₂ O3159 – 1610.359 77(CH2)2CH3C ₂₁ H ₂₈ N ₂ O3138 – 139 760.249 0.497(CH2)3CH3C ₂₃ H ₃₂ N ₂ O3133 – 134 730.183 0.650(CH2)4CH3C ₂₅ H ₃₆ N ₂ O3132 – 133 750.123 0.853(CH2)5CH3C ₂₇ H ₄₀ N ₂ O3130 – 132 730.079 73(CH2)6CH3C ₂₉ H ₄₄ N ₂ O3130 – 131 720.061 72	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*a*} TLC Silufol UV-254 in 1 M HCl-acetone. ^{*b*} $R_M = \log (1/R_F - 1)$.

TABLE II			
Selected ¹ H NMR	spectral parameters	(δ , ppm) of	compounds IIa – IIh

Compound	H-2	H-4	H-5	H-6	NH	Alkyl
IIa	7.17	6.55	7.17	6.93	8.50	3.73
IIb	7.16	6.53	7.15	6.90	8.58	3.99, 1.32
Ис	7.19	6.53	7.15	6.88	8.60	3.88, 1.72, 0.98
IId	7.19	6.53	7.15	6.88	8.61	3.93, 1.68, 1.43, 0.93
IIe	7.18	6.53	7.15	6.87	8.61	3.93, 1.77, 1.40, 1.35, 0.90
IIf	7.18	6.53	7.15	6.87	8.61	3.92, 1.70, 1.41, 1.30 (4 H), 0.88
IIg	7.19	6.53	7.14	6.87	8.62	3.93, 1.70, 1.41, 1.35, 1.28 (4 H), 0.90
IIh	7.19	6.53	7.14	6.87	8.61	3.92, 1.70, 1.41, 1.35, 1.27 (6 H), 0.86

	Alkyl
	C=0
	C-6
IIa – IIh	C-5
sompounds	C-4
), ppm) of c	C-3
trameters (8	C-2
spectral pa	C-1
T _{ABLE} III Selected ¹³ C NMR	Compound

Alkyl	54.9	62.8, 14.7	68.8, 22.1, 10.4	67.0, 30.8, 18.8, 13.7	67.2, 28.3, 27.8, 22.1, 13.9	67.2, 28.7, 25.2, 31.0, 22.1, 13.9	67.2, 28.7, 25.5, 28.4, 31.2, 22.0, 13	67.2, 28.8, 25.5, 28.7, 28.7, 31.2, 22
C=0	152.4	152.4	152.4	152.4	152.3	152.3	152.3	152.3
C-6	110.6	110.4	110.4	110.4	110.4	110.4	110.4	110.4
C-5	129.6	129.5	129.5	129.5	129.5	129.5	129.5	129.5
C-4	107.2	107.8	107.8	107.8	107.8	107.8	107.8	107.8
C-3	159.7	158.9	159.1	159.1	159.1	159.1	159.1	159.1
C-2	104.0	104.5	104.5	104.5	104.5	104.5	104.5	104.5
C-1	140.9	140.8	140.8	140.8	140.8	140.8	140.8	140.8
Compound	IIa	qII	IIc	Шd	Ille	IIf	IIg	IIh

67.2, 28.8, 25.5, 28.7, 28.7, 31.2, 22.1, 13.9 67.2, 28.7, 25.5, 28.4, 31.2, 22.0, 13.9 67.2, 28.7, 25.2, 31.0, 22.1, 13.9

110.4

107.8

The products were also studied using thin-layer partition chromatography. We have found experimental conditions which afford satisfactory resolution of the separate members of series *II*, with the R_F values ranging from 0.06 (compound *IIa*) to 0.59 (compound *IIh*) (Table I). As expected and similarly to other homologous series^{9,10}, there is a linear relationhip between $R_M [R_M = \log (1/R_F - 1)]$ (ref.¹⁰) and the number of carbons (*n*) in the alkoxy group:

$$R_M = 0.199 \ n - 0.353 \ (r = 0.997, \ s = 0.030),$$

where r is the correlation coefficient and s the residual scattering.

EXPERIMENTAL

The melting points were determined with a Boetius block and are unceorrected. IR spectra were measured in chloroform solution on a Specord M-80 (Zeiss) spectrophotometer. NMR spectra (¹H at 300 MHz and ¹³C at 75 MHz) were obtained on a Varian VXR-300 spectrometer in CDCl₃, using tetramethylsilane as an internal reference. All the compounds were checked for purity by partition TLC on silica gel Silufol UV-254 (Kavalier Votice, The Czech Republic) plates impregnated with a 5% solution of silicon oil in heptane, using 1 M HCl–acetone (1 : 1) as the mobile phase (detection by 254 nm UV light).

General Procedure for the Preparation of N,N'-Bis(3-alkoxyphenyl)ureas IIa - IIh

A mixture of 3-alkoxyphenylisocyanate I (30 mmol), sodium hydroxide (600 mg, 15 mmol) and water (10 ml) was heated under stirring for 2 h at boiling temperature. After slow cooling to room temperature (within 30 min) the solid product that appeared was collected by filtration, washed with water and dried. The obtained colourless product was finally crystallized from 2-propanol–water (1 : 1).

REFERENCES

- 1. Gold N. H., Frankel M. B., Linden G. B., Klager K.: J. Org. Chem. 27, 334 (1962).
- 2. Sekera A., Borovansky A., Jakubec J., Palat K., Vrba C.: Cesk. Farm. 5, 38 (1956).
- 3. Gregan F., Durinda J., Tumova I., Polasek E., Borovansky A.: Cesk. Farm. 36, 448 (1987).
- 4. Cizmarik J., Borovansky A., Svec P.: Acta Fac. Pharm. Univ. Comen. 29, 53 (1976).
- 5. Gregan F., Novomesky P., Racanska E., Kettmann V.: Farmaco, Ed. Sci. 47, 327 (1992).
- 6. Spinner E.: Spectrochim. Acta 15, 95 (1959).
- 7. Mooney E. F.: Spectrochim. Acta 19, 877 (1963).
- 8. Lacova M., Nga N. T., Halgas J.: Collect. Czech. Chem. Commun. 53, 315 (1988).
- 9. Bate-Smith E. C., Westall R. G.: Biophys. Acta 4, 427 (1950).
- Bachrata M., Blesova M., Schultzova A., Grolickova L., Bezakova Z., Lukas A.: J. Chromatogr. 171, 29 (1979).

Revised by I. Kovarova.